Estimating High-dimensional Intervention Effects from Observational Data by Marloes
نویسندگان
چکیده
We assume that we have observational data generated from an unknown underlying directed acyclic graph (DAG) model. A DAG is typically not identifiable from observational data, but it is possible to consistently estimate the equivalence class of a DAG. Moreover, for any given DAG, causal effects can be estimated using intervention calculus. In this paper, we combine these two parts. For each DAG in the estimated equivalence class, we use intervention calculus to estimate the causal effects of the covariates on the response. This yields a collection of estimated causal effects for each covariate. We show that the distinct values in this set can be consistently estimated by an algorithm that uses only local information of the graph. This local approach is computationally fast and feasible in high-dimensional problems. We propose to use summary measures of the set of possible causal effects to determine variable importance. In particular, we use the minimum absolute value of this set, since that is a lower bound on the size of the causal effect. We demonstrate the merits of our methods in a simulation study and on a data set about riboflavin production.
منابع مشابه
Estimating high-dimensional intervention effects from observational data
We assume that we have observational data, generated from an unknown underlying directed acyclic graph (DAG) model. A DAG is typically not identifiable from observational data, but it is possible to consistently estimate the equivalence class of a DAG. Moreover, for any given DAG, causal effects can be estimated using intervention calculus. In this paper, we combine these two parts. For each DA...
متن کاملEstimating the effect of joint interventions from observational data in sparse high-dimensional settings
We consider the estimation of joint causal effects from observational data. In particular, we propose new methods to estimate the effect of multiple simultaneous interventions (e.g., multiple gene knockouts), under the assumption that the observational data come from an unknown linear structural equation model with independent errors. We derive asymptotic variances of our estimators when the un...
متن کاملCausal stability ranking
Genotypic causes of a phenotypic trait are typically determined via randomized controlled intervention experiments. Such experiments are often prohibitive with respect to durations and costs, and informative prioritization of experiments is desirable. We therefore consider predicting stable rankings of genes (covariates), according to their total causal effects on a phenotype (response), from o...
متن کاملCausal Inference and the Heckman Model
In the social sciences, evaluating the effectiveness of a program or intervention often leads researchers to draw causal inferences from observational research designs. Bias in estimated causal effects becomes an obvious problem in such settings. This article presents the Heckman Model as an approach sometimes applied to observational data for the purpose of estimating an unbiased causal effect...
متن کاملMatching Methods for High-Dimensional Data with Applications to Text∗
Matching is a popular technique for preprocessing observational data to facilitate causal inference and reduce model dependence by ensuring that treated and control units are balanced along pre-treatment covariates. While most applications of matching balance on a small number of covariates, we identify situations where matching with thousands of covariates may be desirable, such as causal infe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009